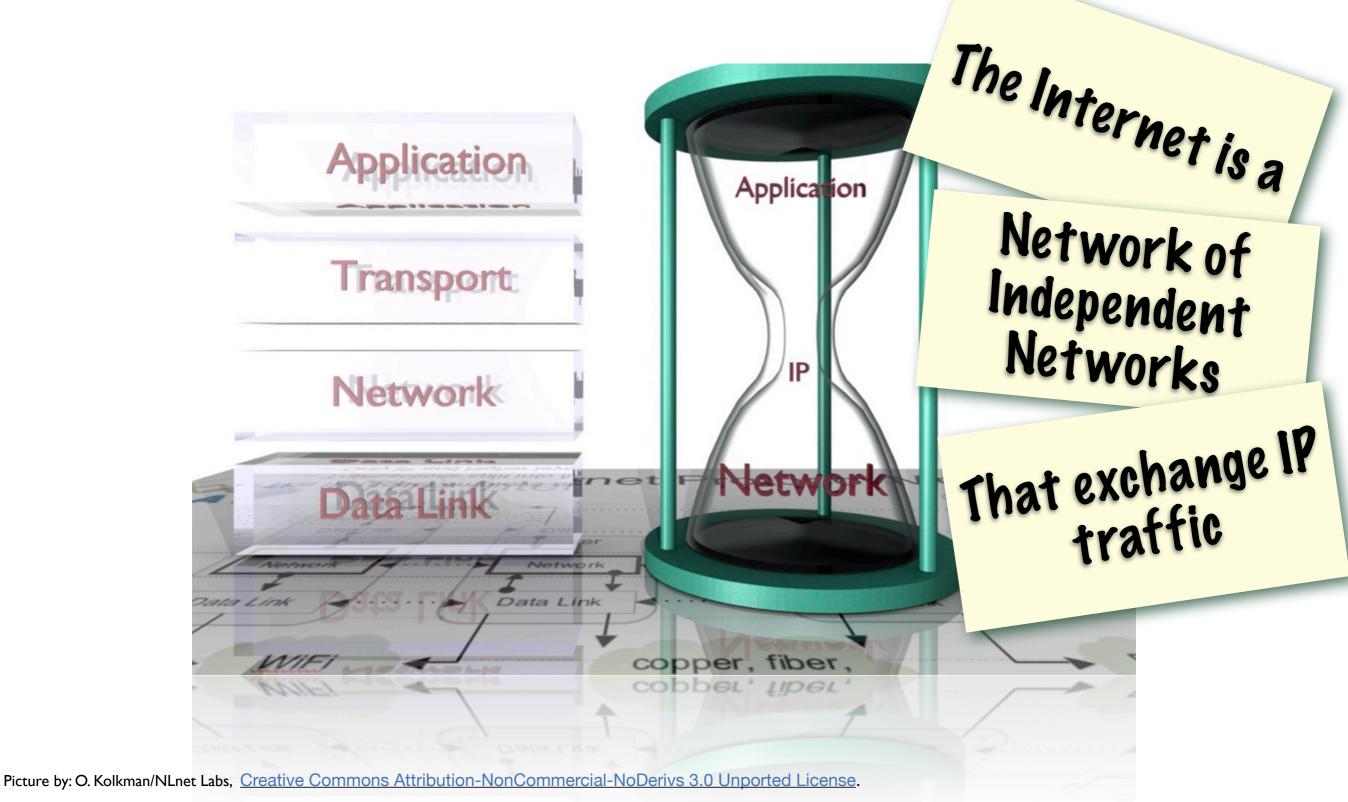


Open Standards for an Open Internet

OUTLINE

Open Internet

Open Standards


The IETF as a Open Standards Body

Org Chart

Working Methods

Participation

Work of Potential Interest Open Internet?

The IP API as the common open interface to the network

amazon webservices™



Permissionless Innovation

Mini note: HTTP is more and more the de-facto substrate

Highly competitive

Commodity

The Price of Bandwidth, in bulk, per Mbps

A EUR80 fiber cross connect:	\$0.01
Internet Exchange traffic:	\$0.25*
Backbone traffic Western Europe:	\$0.50
Transatlantic traffic, wholesale:	\$1
Internet Transit, wholesale:	\$2
Internet Transit, retail:	\$15
Broadband Internet, consumer:	\$50
National Ethernet service:	\$180
3G mobile data, national:	\$11,400
GSM voice call, national:	\$483,840
3G mobile data, roaming low:	\$834,000
3G mobile data, roaming high:	\$3,127,500
GSM voice call, roaming:	\$3,338,496
SMS Text Messages:	\$210,000,000
SMS Text Messages, roaming:	\$1,166,400,000

Western Europe, early-mid 2011 (based on 10Gbps or 300GB)

Open Internet Keywords

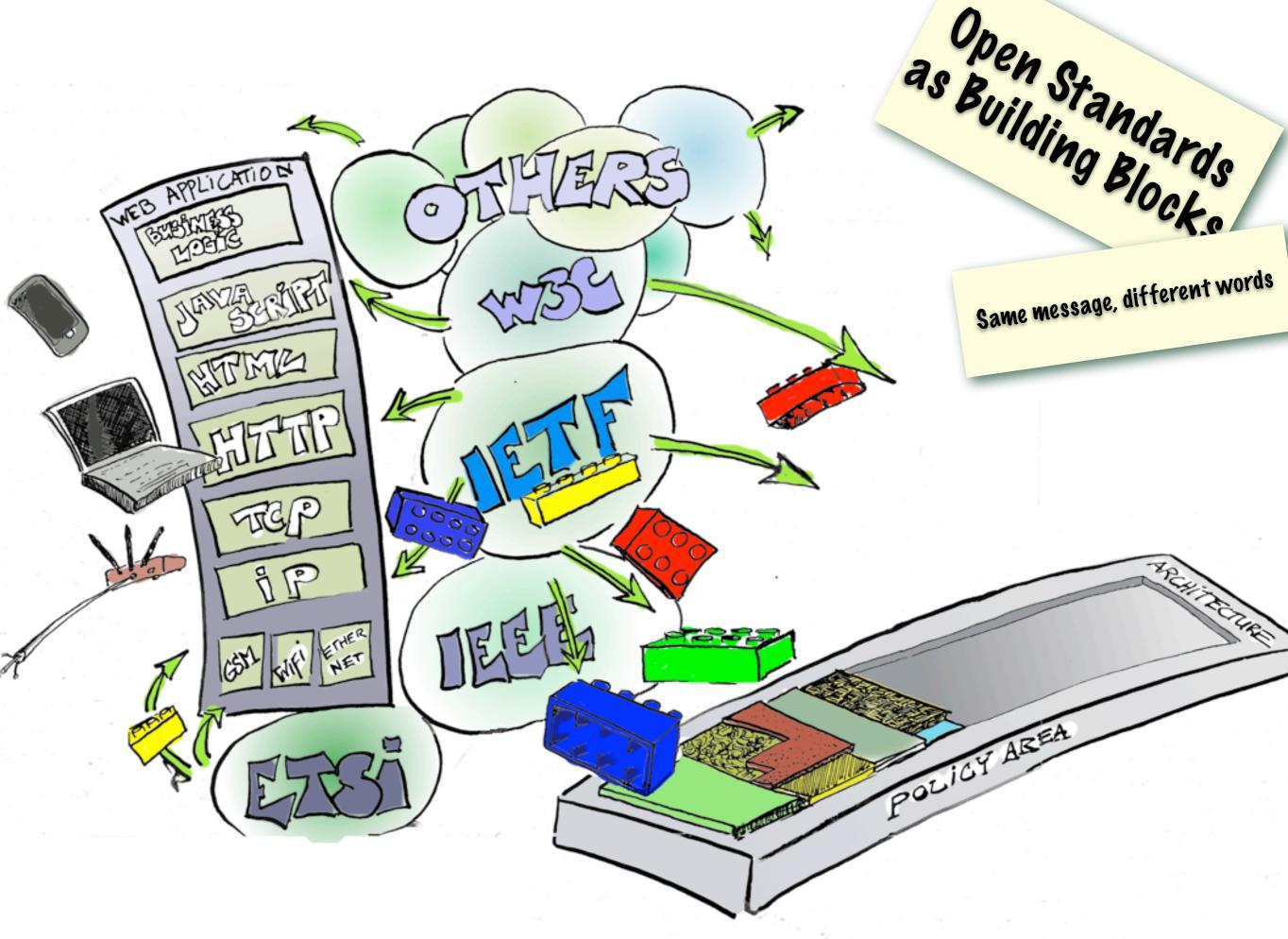
Voluntary adoption of technology

bottom-up innovation

Functional Interoperability

Different Players at Different Layers

> Global Generic and Universal


Collaboration Where needed

Competition where possible

How Do Open Standards Play a Role

Browsing The Web			
802,11	IEEE	TCP/IP	IETF
URI	IETF	BGP	IETF
NAT	No Standard		IETF
CSS	W3C	PNG	IETF
	W3C/ISO	MPEG	ISO/IEC
	W3C	ADSL	ITU-T

Interoperability

Standardization the Internet way

Collective Empowerment Cooperation

Voluntary Adoption

the modern

paradigm for standards

Adherence to Principles

Availability

advance success provide grand interested balance success provide grand serve informed technical inclusive advance intellectual based benefiting autonomy integrity periods defined specifications desiliency prior tair non-exclusive accessible range agreement. participant competition **≧**interoperability consensus approval property scalability equity S contribute adoption market market adopted records comment contributed determined 5 clear building

> driver for innovation Borderless commerce

Details on: http://open-stand.org

1. Cooperation

Respectful cooperation between standards organizations, whereby each respects the autonomy, integrity, processes, and intellectual property rules of the others.

2. Adherence to Principles

Adherence to the five fundamental principles of standards development:

- **Due process.** Decisions are made with equity and fairness among participants. No one party dominates or guides standards development. Standards processes are transparent and opportunities exist to appeal decisions. Processes for periodic standards review and updating are well defined.
- **Broad consensus.** Processes allow for all views to be considered and addressed, such that agreement can be found across a range of interests.
- Transparency. Standards organizations provide advance public notice of proposed standards development
 activities, the scope of work to be undertaken, and conditions for participation. Easily accessible records of
 decisions and the materials used in reaching those decisions are provided. Public comment periods are
 provided before final standards approval and adoption.
- **Balance.** Standards activities are not exclusively dominated by any particular person, company or interest group.
- Openness. Standards processes are open to all interested and informed parties.

3. Collective Empowerment

Commitment by affirming standards organizations and their participants to collective empowerment by striving for standards that:

- are chosen and defined based on technical merit, as judged by the contributed expertise of each participant;
- provide global interoperability, scalability, stability, and resiliency;
- enable global competition;
- serve as building blocks for further innovation; and
- contribute to the creation of global communities, benefiting humanity.

4. Availability

Standards specifications are made accessible to all for implementation and deployment. Affirming standards organizations have defined procedures to develop specifications that can be implemented under fair terms. Given market diversity, fair terms may vary from royalty-free to fair, reasonable, and non-discriminatory terms (FRAND).

5. Voluntary Adoption

Standards are voluntarily adopted and success is determined by the market.

Cooperation

Adherence to Principles

Empowermen

Availability

Voluntary Adoption OUTLINE

Open Internet

Open Standards

We are here

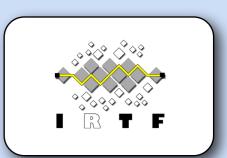
The IETF as a Open Standards Body

Org Chart Methods

Participation

The Internet Engineering Task Force is a loosely self-organized group of people who contribute to the engineering and evolution of Internet technologies. It is the principal body engaged in the development of new Internet standard specifications.

RFC4677


The mission of the IETF is to make the Internet work better by producing high quality, relevant technical documents that influence the way people design, use, and manage the Internet.

IETF Universe

RFC Editor

working

group

working

group

working

group

working

group

working

IETF Secretariat

IASA IAD IAOC IETF Trust

Area	Area
working	working
group	group
working	working
group	group
working	working
group	group
working	working
group	group
working	working
group	group

working

working

IESG				
Area	Area	Area	Area	Area
working	working	working	working	working
group	group	group	group	group
working	working	working	working	working
group	group	group	group	group
working	working	working	working	working
group	group	group	group	group
working	working		· · · · · · · · · · · · · · · · · · ·	working

working

group

working

group

working

group

working

About Packets

About creating the paths for the packets

About managing the networks

TSV

About the use of the paths to provide the end-to-end experience

SEC

About
Security
Protocols
(cross area)

APS

About Application Protocols used on the Internet

About
Real Time
Applications

IESG

,
Applications Area P. Resnick B. Leiba
appsawg
core
httpbis
hybi
icardcal
paws
precis
repute
scim
spfbis
urnbis
websec

weirds

Transport Area M. Stiemerling alto behave cdni ippm mptcp nsfv4 DDSD rmcat rmt storm tcpm tsvwg

Security Area S.Turner S. Farrell abfab dane emu ipsecme iose kitten mile nea oauth pkix tls

Routing Area S. Bryant A. Farrell bfd ccamp forces i2rs idr isis karp 12vpn 13vpn

manet

mpls

nvo3

ospf

pce

pim

pwe3

roll

rtwg

sidr

O&M Area B. Claise J. Jaeggli 6renum adslmib bmwg dime dnsop eman grow ipfix mboned netconf netmod opsawg opsec v6ops wkops

RAI Internet Area Area G.Gamarillo B. Haberman R. Barnes T. Lemmon 6lowpan avtcore avtext 6man **bfcpbis** ancp clue dhc dmm codec cuss dnext hip dispatch drinks homenet intarea ecrit 12tpext geopriv lisp insipid lwig mediactrl mif mmusic p2psip mip-4 payload multimob rtcweb netext ntp salud pcp siprec pppext SOC savi straw viper softwire xmpp sunset4 xrblock tictoc

trill

GENERAL AREA J.Arko

last update of this slide: march 2013

IETF Standards and RFCs

IETF standards are published as No.

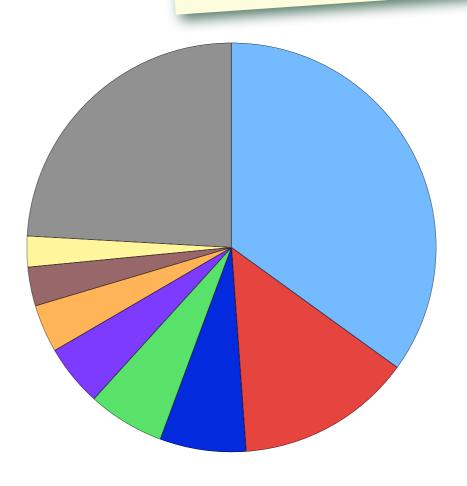
- Standards track
- Best Current Practices (operational)
- Informational and Experimental

RFC series also includes

- IRTF (Internet Research Task Force)
- IAB (Internet Architecture Board)
- Independent contributions

Standards Track documents are maintained by the IETF

• IESG approval: based on consensus process


Internet-Drafts **IESG** Approval **Proposed Standard IESG** Approval draft full Internet Standard new 2 step old 3 step

Not al RFCs are lETF standards

IETF 87 Participal Who Participates

- 1407 people
 - 316 newcomers
 - IETF 84 (Vancouver) was 1199 people
- 62 countries
 - IETF 84 was 52 countries

Berlin Meeting Stats

JP

FR

November	3-8,	2013
----------	------	------

Vancouver, CA

March 2-7, 2014

London, UK

July 20-25, 2014

Toronto, CA

November 9-14, 2014

Honolulu, US

March 22-27, 2015

Dallas, US

July 19-24, 2015

Prague, CZ

November 1-6, 2015

Yokohama, JP

Who Pays

IETF 2012 - 2014 Budget			34110
Revenues Revenues	2012	2013	202
Registration Fees	Budget	Advice	Advice
Meeting Sponsorship	\$ 2,152	\$ 2,101	
Network/NOC Host	310	290	
Hotel Commissions	556	555	590
New Revenue	145	150	605
Miscellaneous	100	125	150
Total Revenue	0	-	125
	\$ 3,264	\$ 3,221	\$ 3,589
Evnonces	2012	2013	
Expenses	Budget		2014
RFC Services	900	Advice	Advice
Secretariat Services		\$ 933	\$ 933
Secretariat Costs (Other)	1,775	1,788	1,788
Meeting Space Costs	350	-	-
Network/NOC Costs		290	590
Meeting Operations (Secretariat)	600	555	630
Other Meeting Costs	912	828	828
Subtotal Direct Meeting Costs	118	124	124
Transition Expenses	1,979	1,796	2,171
Special Projects	85	60	60
IT Maintenance	50	50	50
Admin (IASA,IETF, IAB, IRTF, NomCom)	50	75	100
TEIF Irust	415	424	442
ISOC G&A	35	37	39
Total Expenses	120	125	130
SOC Direct Contribution = 1	\$ 5,408	\$ 5,287	\$ 5,713
SOC Direct Contribution Excluding Development	\$ 2,145	\$ 2,067	
11 TOOIS Development	215		\$ 2,124
SOC Direct Contribution Including Development	\$ 2,360	\$ 2.117	75
	7 2,500	\$ 2,117	\$ 2,199

Public Policy Objectives STANDARDS

Technology

Tussle in Cyberspace: Defining Tomorrow's Internst Read

David D. Clark MIT Lab for Computer Science Karen R. Sollins an for Computer Science USC Information Sciences Institute

ereated in simpler times. Its creators they wanted to build 1. INTRODUCTION wanted to be computers in the applications could ther designers,

http://groups.csail.mit.edu/ana/ Publications/PubPDFs/ Tussle2002.pdf

2 word description of policy area

The design of the building blocks is sometimes triggered by policy requirements and sometimes there are identified public policy aspects.

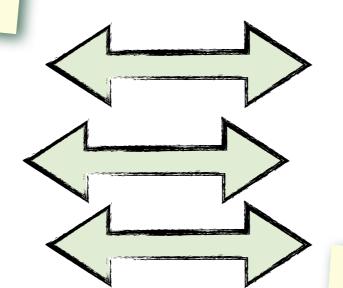
IETF Technology

EXAMPLES

Public Policy Aspects

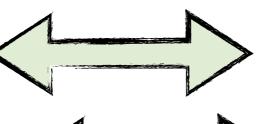
Stir

Ecrit


Paws

Lmap

Mile


Weirds

Eman

Tel. number authorization

Emergency Response

Spectrum Management

> Consumer / Universal Service

ICT trust and security

law enforcement

Energy Management

Question Time

What follows are slides used during Q&A

Some questions where anticipated

IETE Crypto

IETF uses Crypto, does not develop Crypto

IETF protocols are crypto agile

- IETF creates few obstacles to support of national cryptographic algorithms in IETF protocols
 - Public pointer to algorithm definition required, but the documentation need not be an RFC.
 - Easy to publish specifications on algorithm use with IETF security protocols as Informational RFCs
 - Procedures in place to allocate code points
 - Process already used for publication of RFCs specifying use of US, Korean, Japanese, and Russian cryptographic algorithms

USA – Suite B – RFC 5430, 5647, 6239, 6318, 6379, 6380, etc. **Korea** – SEED – RFC 4009, 4010, 4162, 4196, 4269, 5669, 5748 **Japan** – Camellia – RFC 3657, 3713, 4132, 4312, 5528, 5529, etc. **Russia** – GOST – RFC 4357, 4491, 5830, 5993, etc.

August 1996 RFC1984

IAB and IESG Statement on Cryptographic Technology and the Internet

Escrow mechanisms inevitably weaken the security of the overall can and will be attacked KEYS SHOULD NOT BE REVEALABLE can and will be attacked. a modern cryptosystem rests entirely on the secrecy cordingly, it is a major principle of system design Sometimes escrow systems are touted as being good for the customer because they allow data recovery in the case of lost keys.

The should be up to the support of decide whether they were the support of decide whether they are the support of decide whether the support of decide whether they are the support of decide whether they are the support of decide whether they are the support of the support of decide whether the support of the possible, secret keys should never leave their Decause they allow data recovery in the case of lost keys. nowever, to decide whether they Would prefer it should be up to the customer to decide whether are allowed to the customer to decide whether they would be up to the customer to decide whether are allowed to the customer to decide whether they would prefer the should be up to the customer to decide whether they would prefer the should be up to the customer to decide whether they would prefer the should be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer to decide whether they would be up to the customer they woul ronment. Key escrow implies that keys must be the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the lost keys mean lost data, or one in the more secure system in which lost keys mean lost data, or one in the more secure system in the more ashion, a flat-out contradiction of this DATA RECOVERY which keys are escrowed to be recovered when necessary.

Which keys are escrowed to be recovered to file of the state of t disclosure Weakens the total security of which keys are escrowed to be recovered when necessary. Similarly, which keys used only for conversations COMOTA secret key is stored by nractical for keys used only for conversation: CONCLUSIONS never be escrowed. And a syste a government and not by the dat As more and more companies connect to the Internet, and as more and

data recovery.

more commerce takes place there, security is becoming more and more critical. Cryptography is the most powerful single tool that users can use to secure the Internet. Knowingly making that tool weaker threatens their ability to do so, and has no proven benefit.

May 2000 RFC 2804

IETF Policy on Wiretapping

Abstract

The Internet Engineering Task Force (IETF) has been asked to take a position on the inclusion into IETF standards-track documents of functionality designed to facilitate wiretapping.

This memo explains what the IETF thinks the question means, why its answer is "no", and what that answer means.

SDO	IETF Liaison Manager	IAB Liaison Shepherd
3GPP	Gonzalo Camarillo	Hannes Tschofenig
3GPP2	Charlie Perkins	Marc Blanchet
Broadband Forum	David Sinicrope	Ross Callon
CableLabs	Ralph Droms	Eliot Lear DOCK
ICANN Board of Directors	Jonne Soininen	Eliot Lear Andrew Sun Relation Eliot Lear
ICANN NomCom	Russ Mundy	Eliot Lear
ICANN RSSAC	Peter Koch	Marc Blanchet
IEEE 802.1	Eric Gray	Bernard Aboba
IEEE-SA	<u>Dan Romascanu</u>	Bernard Aboba
ISO/IEC JTC1 SC2	Patrik Fältström	Russ Housley
ISO/IEC JTC1 SC29	Stephan Wenger	Russ Housley
ISO/IEC JTC1 SC6	Allison Mankin	Russ Housley
ISO/TC46	John Klensin	Russ Housley
ITU-T	Scott Mansfield	Ross Callon
ITU-T, MPLS	Deborah Brungard	Ross Callon
ITU-T, SG15 (optical control plane)	John Drake	Ross Callon
Messaging Anti-Abuse Working Group (MAAWG)	Barry Leiba	Hannes Tschofenig
Unicode	Patrik Fältström	Dave Thaler
W3C	Mark Nottingham	Alissa Cooper
WIPO	Patrik Fältström	
ZigBee Alliance	JP Vasseur	

